二分查找算法细节


我周围的人几乎都认为二分查找很简单,但事实真的如此吗?二分查找真的很简单吗?并不简单。看看 Knuth 大佬(发明 KMP 算法的那位)怎么说的:

Although the basic idea of binary search is comparatively straightforward, the details can be surprisingly tricky…

这句话可以这样理解:思路很简单,细节是魔鬼
本文就来探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。

而且,我们就是要深入细节,比如while循环中的不等号是否应该带等号,mid 是否应该加一等等。分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。

二分查找框架

int binarySearch(vector<int>&nums, int target) {
    int left = 0, right = ...;

    while(...) {
        int mid = (right + left) / 2;
        if (nums[mid] == target) {
            ...
        } else if (nums[mid] < target) {
            left = ...
        } else if (nums[mid] > target) {
            right = ...
        }
    }
    return ...;
}

分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。

其中…标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。

另外声明一下,计算 mid 时需要技巧防止溢出,建议写成: mid = left + (right - left) / 2,本文暂时不讨论这个问题。

一、寻找一个数(基本的二分搜索)

这个场景是最简单的,肯能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。

int binarySearch(vector<int>& nums, int target) {
    int left = 0;
    int right = nums.size() - 1; // 注意

    while(left <= right) { 
        int mid = (right + left) / 2;
        if(nums[mid] == target)
            return mid;
        else if (nums[mid] < target)
            left = mid + 1; 
        else if (nums[mid] > target)
            right = mid - 1; 
        }
    return -1;
}

为什么 while 循环的条件中是 <=,而不是 <?

答:因为初始化 right 的赋值是 nums.length - 1,即最后一个元素的索引,而不是 nums.size()。

这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right],后者相当于左闭右开区间 [left, right),因为索引大小为 nums.length 是越界的。

我们这个算法中使用的是 [left, right] 两端都闭的区间。这个区间就是每次进行搜索的区间,我们不妨称为「搜索区间」(search space)。

什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:




关于二分查找的细节就不再详细说明了,主要在于看清题目要求,对左右边界进行收缩,好几次都快被自己蠢哭了wow


文章作者: 再也不会
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 再也不会 !
  目录